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a b s t r a c t

A method is proposed for obtaining the exact solutions of evolutionary equations in the form of a rational
function. Invariant manifolds of the equations are used which have the same form of dependence on the
required function and its derivatives as the generalized Riccati equations. Using fifth-order Kawahara and
Korteweg–de Vries equations as an example, it is shown that their known particular solutions can be
obtained using this method. New solutions of a non-linear fifth-order equation, which is encountered
when describing long waves on water, are obtained.
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1. Rational solutions

Particular solutions of the evolutionary equations (EEs)

(1.1)

where F[u] F(x, u, ux, . . ., ∂mu/∂xm) is a certain smooth function, often have the form

(1.2)

Unlike the “polynomial” solutions

(1.3)

which have been studied previously,1–3 we shall, for brevity, refer to solutions (1.2) as rational solutions of EEs (1.1).
A general approach to the construction of such solutions is proposed, which is based on the method of differential constraints4 (or

invariant manifolds5) which are sought in the form of generalized Riccati equations.6,7

For n ≤ 6, this approach is illustrated using the example of the fifth order Korteweg - de Vries (KdV) equation (for the derivation, see Ref
8, for example)

(1.4)

the equations of long waves in a shallow water under an ice sheet9

(1.5)

and the previously studied10 equations describing long waves on water

(1.6)
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2. Invariant manifolds

The ordinary differential equation (ODE)

(2.1)

defines an invariant manifold5 of EEs (1.1), or, in common terms, a differential constraint of EEs (1.1), if the relation

(2.2)

is satisfied. Here, Dt is the operator for the total derivative with respect to t by virtue of EEs (1.1), Dx is the operator for the total derivative
with respect to x, and [�] denotes ODE (2.1) and its differential implications of the first, . . ., and m-th order. Since the operators F[u] in EEs
(1.1) and �[u] in ODE (2.1) do not explicitly contain t, the operators F[y] and �[y] for the function y(x) will be considered together with
them.

Theorem 1. Every ODE

(2.3)

defining an invariant manifold of EEs (1.1) is invariant under the Lie–Becklund operator

(2.4)

with a coordinate F[y] defined by the right-hand side of EEs (1.1).

For the proof, it is sufficient to note that relation (2.2) is identical with the invariance criterion11

(2.5)

of Eq. (2.3) with respect to operator (2.4), where

(2.6)

Relation (2.5) is an identity with respect to the variables x, y, y′, . . . , y(n−1). All the invariants of ODE (2.3) with respect to operator (2.4)
can be found for each n if the dependence �[y] on y, y′, . . ., y(n) is specified with undetermined coefficients that are functions of x. In this
case, the decomposition of equality (2.5) with respect to y, y′, . . . , y(n−1) leads to a system of governing equations in these coefficients.

Suppose an invariant manifold, giving the ODE (2.3), is found and its solution y(x) = Y(x, c1, . . ., cn) is known. Substitution of this solution
in the form

into EEs (1.1) then leads to a system of ODEs in the functions �1(t), . . ., �n(t). Hence, the polynomial solutions (1.3) are generated by ODEs
(2.3) that are linear in y, y′, . . ., y(n) with a general solution1–3

Hence, in order to construct the rational solutions (1.2) of EEs (1.1), it is necessary to determine the class of ODEs (2.3), the general solution
of which has the form

(2.7)

3. Generalized Riccati equations

Vessiot6 introduced high order equations into the treatment, possessing a common solution in the form of the ratio (2.7). An n-th order
Riccati equation is obtained by eliminating the parameters ci from equalities (2.7), and, with certain coefficients, ai = ai(x) it has the form

(3.1)

(3.2)
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(3.3)

The Riccati equations Rn[y] = 0, n ≥ 2 possess the same properties as the Riccati equation (3.1). However, using the differential substitution,
they reduce to an (n + 1)-order linear equation6 and their general solution can be obtained without quadratures if 2n + 1 particular solutions
are known.7

Comparing the number of coefficients fi(x) and gi(x) in equalities (2.7) and the number of parameters ai(x) in Eqs. (3.2) and (3.3), we see
that the parameters of the equations R2[y] = 0 are associated by two relations and the equations R3[y] = 0 are associated by eight relations
and so on. They are well known in the case of Eq. (3.2).6 If a0 �= 0, then the equation Rn[y] = 0 is reduced by means of the substitution
y = 1/ȳ − a1/a0 to an equation of the same form with a0 = 0, a1 = 1 which is a solution of the Riccati equation if and only if

The equations Rn[y] = 0 (the second Painlevé equation, for example) have the same form of dependence on y, y′, . . ., y(n) as (3.2), (3.3)
and so on but, not being Riccati equations, they often possess one-parameter families of solutions

(3.4)

In the majority of cases, they correspond to self-similar solutions of EEs (1.1) or solutions of a travelling wave type. The function (3.4) is the
general solution of a first-order Riccati equation of degree k

where Rij = 0 is the ordinary Riccati equation with the general solution

This means that, with certain coefficients bi = bi(x), the equations

(3.5)

have the form

Here,

The determination of the invariant manifolds defined by Eq. (3.5) is a laborious problem. All of the non-linear invariant manifolds of
the form

(3.6)

are therefore first found for EEs (1.4)–(1.6).
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The extended operator (2.6) is compiled using the right-hand side F[y] of the EE. It acts on Eq. (3.6) with undetermined coefficients ai(x).
After the derivatives y(n), . . . , y(n+m) are substituted into the resulting equality, it is decomposed with respect to y, y′, . . . , y(n−1) in view
of Eq. (3.6) and Dj

xRn[y] = 0(j = 1, . . . , m). This gives an overdetermined system of ODEs in the functions ai(x). Obviously, non-integrable
m-th order EEs can only have non-linear invariant manifolds of the form (3.6) when n ≤ m.

The particular solutions (3.4) of ODEs (3.6) that have been found in this manner enable us to construct certain rational solutions of Eqs.
(1.4)–(1.6). In many cases, this is only possible in the case of particular values of the parameters of ODEs (3.6). For brevity, those parameters
that have an influence on the final form of the solution of the EEs are presented in this paper. Thus, in the case of travelling wave-type
solutions of Eqs. (1.5) and (1.6), the parameter K1 is equal to the velocity of the wave.

The functions (3.4) can be sought as solutions of the first order ODEs (3.5), k ≤ n, which are the integrals of Eq. (3.6). The coefficients
bi(x) of the integral (3.5) are found from the overdetermined system of ODEs. It is obtained accompanying the decomposition of (3.6) with
respect to y and y′ in which the derivatives y′′, . . ., y(n) and, then, (y′)j (j ≥ k) are replaced in view of Eq. (3.5) and its differential corollaries.

4. The fifth order Korteweg–de Vries (KdV) equation

The Lie–Becklund operator

(4.1)

corresponds to EE (1.4).
The even-order equations

(4.2)

which define an infinite sequence of invariant manifolds of the KdV equation,12 are invariant under to the operator (4.1) and their differential
corollaries R2n+1[y] DxR2n[y] = 0. The operator Pi in Eq. (4.2) is found using the Lenard formula

Eq. (4.2) when n = 1

(4.3)

has the integral

and, consequently, its general solution is expressed in terms of elliptic functions. When K0 = K2
1 /6 − 8�4/3, Eq. (4.3) has particular solutions

with m = 2 and M = −K1/6

(4.4)

Substitution of the solutions u(t, x) = y(x, �(t)) into Eq. (1.1) leads to the relation

and, in particular, the single-soliton solution of Eq. (1.4) is obtained from this

The general solution of Eq. (4.2) when n = 2

(4.5)

is expressed in terms of hyperelliptic functions.13–15 If K0 = K3
2 /50 and K1 = 3K2

2 /10, then Eq. (4.5) has the integral
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By means of the substitution

it is transformed into the Riccati equation z′ + z2 − 2x−2 = 0, from which it is possible to obtain the particular solution of Eq. (4.5)

Eq. (4.5) is self-similar and the function y(x + c2, c1) is therefore also its solution. Substitution of the function u(t, x) = y(x + �2(t), �1(t)) into
Eq. (1.4) leads to the relations

which, when K2 = 0, gives the well-known self-similar solution of the KdV equation

which, at the same time, will not be self-similar in the case of Eq. (1.4).
Elimination of y′′′ from the integrals of the third-order Eq. (4.5)

leads to a second-order equation of the fourth degree in y′′. Its integration when

enables us to obtain the two-parameter families of solutions of Eq. (4.5)

From Eq. (1.4), where u(t, x) = y(x, �1(t), �2(t)), it follows that

and, in particular, the well-known two-soliton solution of Eq. (1.4) is obtained from this.
Eq. (4.2) when n = 3

if
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has the particular solutions

One of them corresponds to the self-similar solution of the KdW equation but contradictory equalities are obtained when

is substituted into the fifth-order KdV equation. The other solution generates the self-similar solution of Eq. (1.4)

In addition to Eq. (4.2), the equations

(4.6)

are invariant under to the operator (4.1) and their differential corollaries

The first of the particular solutions of the equation R2[y] = 0 with m = 6 and M = −�/10 generates a further single soliton solution of Eq.
(1.4)

Integration of the second equation of (4.6) leads to the ODE

When C1 = 0, this is a particular solution of Eq. (4.2), n = 1. If, however, C1 �= 0, then, by means of the substitution,

it is transformed into the first Painlevé equation ȳ′′ = 6ȳ2 + x̄.

5. Kawahara equations

A Lie–Becklund operator (2.4) with the coordinate F[y] = yV − y′′′ − yy′ corresponds to Eq. (1.5). The equation

(5.1)

is invariant under this operator and its implication

All the rational solutions of Eq. (1.5) are therefore travelling wave-type solutions.

where y(x) is the solution of Eq. (5.1).
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Eq. (5.1) has the integral (compare with Ref. 9)

(5.2)

By means of the substitution y = z2 + C1, it reduces to the equation

the solution of which is expressed in terms of elliptic functions. Integration of Eq. (5.2) when C2 = 0 gives the well-known9 solitary-wave-type
solution

6. Rational solutions of Eq. (1.6)

The equations

(6.1)

(6.2)

and their corollaries

are invariant under the Lie–Becklund operator (2.4) with the coordinate

for an arbitrary value of the parameter �. When � = 12, � = −12�2, the equations

(6.3)

and R4[y] DxR3[y] = 0 are also invariant under the operator (2.4) as are the equations

(6.4)

and its differential implications when � = � = 12 and the equation

(6.5)

and its corollary R5[y] DxR4[y] = 0 when � = 10.
Eq. (6.1) with arbitrary � has the integral

(6.6)

and its solution is expressed in terms of elliptic functions. In particular, if

then there are solutions (4.4) with m = −1, M = M0 to which the solution of Eq. (1.6)

corresponds.
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All the solutions y(x) of Eq. (6.2) generate solutions of Eq. (1.6) of the travelling-wave type

For arbitrary �, relation (6.6) is the integral of Eq. (6.2). There are other integrals of the form Rk
1[y] = 0(k = 2, 4) in the case when � = 10,

15, −48.
When � = 15,

(6.7)

is also an integral of Eq. (6.2).
If C1 < B2

2/4, then

and, by means of the substitution

the ODE (6.7) is transformed to the ODE

Its integration enables one to obtain the following unrestricted solutions of Eq. (6.2) with � = 15

(6.8)

(6.9)

If � = −48, Eq. (6.2) has the following integrals: (6.6) and

(6.10)

(6.11)

when � = 288�2 and, also,

(6.12)

when � = −192�2.
The ODE (6.11) is reduced, by means of the substitution

to the linear ODE z′ ± 2�z − 1 = 0 from which the solution of Eq. (6.2)

(6.13)

can easily be obtained.
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Fig. 1.

Eq. (6.12) is reduced by means of the substitution

to the Riccati equation z′ ± 6�z = z2 + 10�, which, in the case of Eq. (6.2) with � = −48, gives the solution

(6.14)

Eq. (6.10) is reduced by the substitution

to the equation

the solutions of which are expressed in terms of elliptic functions. For certain values of the parameters C1 and C2 it is possible to obtain
the following solutions of Eq. (6.2)

(6.15)

(6.16)

(6.17)

and, also, if 39m4 − 3m2 − 1 = 0, then, when � = ∓108�2,

(6.18)

Henceforth, only the upper or only the lower signs are taken; ỹ+(x) = ch�x, ỹ−(x) = cos �x.
The functions (6.15) and (6.16) are bounded when � < 0, and (6.17) is bounded when the lower sign is chosen, that is, when � < −72�2.

The solution (6.18) is unbounded when the lower sign is chosen.
A graph of the solution (6.16) for � = −84 is shown by the continuous curve in Fig. 1, a and a graph of the solution (6.17) with the choice

of the lower sign and � = 1 is shown by the dashed curve. The function (6.18) with the choice of the upper sign and �2 = 7/9, m > 0 (the
continuous curve) and m < 0 (the dashed curve) is shown in Fig. 1, b. All the solutions considered are symmetrical about the x = 0 axis and,
therefore, only the domain x ≥ 0 is shown in the figures.
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Fig. 2.

If � = 10, then, in addition to the integral (6.6), Eq. (6.2) has an integral

(6.19)

By means of the substitution

it is reduced to the equation

the solutions of which are expressed in terms of elliptic functions. The following solutions of Eq. (6.2) with � = 10, K1 = �(� − 6)/60 − 2�4/3
are obtained from this for specific values of the parameters C1 and C2

(6.20)

(6.21)

With the choice of the lower sign, the function (6.20) is bounded when � < −10�2, and (6.21) is bounded when � < 0. The graph of the
solution (6.21) is represented by the continuous curve in Fig. 2, a for � = −6 and the graph of the solution (6.20) with the choice of the lower
sign and � = 3/4 is represented by the dashed curve.

After the transformation

Eq. (6.5), which defines the invariant manifold of Eq. (1.6) in the case when � = 10, is identical to the self-similar equation F-VI from Ref.
14 in which fourth-and fifth-order ODEs with the Painlevé property were classified. Its general solution, like the solution of ODE (4.5), is
expressed in terms of hyperelliptic functions. When � = ±20(m2 − 2n2), there is a two parameter family of solutions

to which the solution of Eq. (1.6)

(6.22)

corresponds.
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The solution (6.22) is bounded when � < 0 and m < n.
Eq. (6.5) has first order integrals: (6.6), (6.19) and

(6.23)

Eq. (6.23) is reduced by the substitution

to the Riccati equation z′ = z2 − 6(x + c1)−2 + �/40, which is reduced by means of the substitution z = v′/v to the linear ODE v′′ + (�/40 −
6(x + c1)−2)v = 0. When � = ∓40�2,

(6.24)

is a solution of Eq. (6.5). Substitution of the function u(t, x) = y(x, �1(t), �2(t)) into Eq. (1.6) leads to the relations

This solution of Eq. (1.6) with � = 10 is not self-similar nor a solution of the travelling wave type. When � > 0, the function (6.24) is
unbounded. A graph of this function when � = −6 is shown in Fig. 2, b.

We will now consider the case when � = 12. Integration of Eq. (6.3) leads to the ODE

This equation, like (6.4), is not transformed to the first Painlevé equation. If

then it has the particular solution

The corresponding solution of Eq. (1.6) with � = 12, � = −12�2 has the form

If K0 = |K1| + 1/384, Eq. (6.4) has the particular solution y(x), to which the stationary solution

of Eq. (1.6) with � = 12 and � = 12 corresponds.

7. Conclusion

Thus, a general approach to the construction of the exact solutions in the form (1.2), based on the use of invariant manifolds with
the form of generalized Riccati equations has been proposed for the evolutionary Eq. (1.1). It has been shown, using the examples of Eqs.
(1.4)–(1.6), that most of the known8–10,12 exact solutions of these equations can be obtained by this method. The solutions of Eq. (1.6) with
� = 15, −48 and 10, corresponding to the functions (6.8), (6.9) (6.14) - (6.16), (6.18), (6.21) and (6.24) and, also, the two-soliton solution
(6.22), are new.

Evolutionary equations can be subdivided into three classes with reference to the number of admissible invariant manifolds: 1)
equations, all the rational solutions of which are contained among solutions of the travelling-wave type (such as the Kawahara and
Kuramoto-Sivashinskii equations and Eq. (1.6) with arbitrary �, for example), 2) equations having other rational solutions, but the num-
ber of such equations is limited (Eq. (1.6) with � = 10), and 3) integrable equations having an infinite number of invariant manifolds and,
correspondingly, rational solutions (the KdV, Sawada–Kotera, and Kaup–Kuperschmidt equations)
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